

Some new results on union ultrafilters

P. Krautzberger Freie Universität Berlin

Winter School in Abstract Analysis, 2010

What are union ultrafilters?

What can union ultrafilters do for you?

What can you do for union ultrafilters?

Hindman's Theorem

If \mathbb{N} is finitely coloured, there exist infinite $\mathbf{x} = (x_i)_{i < \omega}$ such that

$$FS(\mathbf{x}) = \{x_{i_0} + \ldots + x_{i_k} \mid k < \omega\}$$

is monochromatic.

Summable Ultrafilter

 $p \in \beta \mathbb{N}$ is a summable ultrafilter if it has a base of $FS(\mathbf{x})$ -sets.

Hindman's Theorem

If $[\omega]^{<\omega}$ is finitely coloured, there exist infinite disjoint $\mathbf{s} = (s_i)_{i < \omega}$ such that

 $FU(\mathbf{s}) = \{s_{i_0} \cup \ldots \cup s_{i_k} \mid k < \omega\}$

is monochromatic.

Union Ultrafilter

 $u \in \beta[\omega]^{<\omega}$ is a union ultrafilter if it has a base of $FU(\mathbf{s})$ -sets.

Definition (Variants of Union Ultrafilters)

A union ultrafilter u on $[\omega]^{<\omega}$ is called

- ordered if it has a base of $FU(\mathbf{s})$ -sets s.t. $s_i \ll s_j$ (i < j).
- ► stable if for every sequence $FU(\mathbf{s}^n)$ $(n < \omega)$ in *u* there exists $FU(\mathbf{t}) \in u$ such that

 $\mathbf{t} \subseteq^* FU(\mathbf{s}^n) \quad (n < \omega).$

Some classical results (Blass, Hindman)

- ▶ If *u* is a union ultrafilter, then min(*u*), max(*u*) are (rapid) *P*-points.
- If *u* is an ordered union ultrafilter, then min(u), max(u) are Ramsey.
- ▶ Assuming e.g. $cov(\mathcal{M}) = \mathfrak{c}$, union ultrafilters exist.

Algebra

- Almost all summables have "trivial sums" (P.K.)
- Summables are strongly right maximal, i.e., $\{q \in \beta \mathbb{N} \mid q + p = p\} = \{p\}$ (folklore)

Topology

- Orbits of summables are vD-spaces (Protasov)
- Union ultrafilters generate maximal group topologies on $[\omega]^{<\omega}$ (Protasov)

Set theory

- ► Con(u < g) via iterated Matet forcing (Blass)</p>
- ▶ *NCF* \Rightarrow *FD* (Mildenberger, Shelah)

Nearly ordered union ultrafilters

Assuming $cov(\mathcal{M}) = \mathfrak{c}$, there exist stable unordered union ultrafilters with min and max Ramsey.

Stability as Ramsey Property (Blass, P.K.)

A union ultrafilter is stable iff

Whenever $([\omega]^{<\omega})^2$ is finitely coloured there exists $FU(\mathbf{s}) \in u$ such that

 $\{(v,w) \in FU(\mathbf{s})^2 \mid v < w\}$

is monochromatic.

Question

Can there be union ultrafilters that are not stable?